Diffusion tractography of the rat knee at microscopic resolution
Wang N, Mirando AJ, Cofer G, Qi Y, Hilton MJ, Johnson GA. Diffusion tractography of the rat knee at microscopic resolution. Magn Reson Med. 2019 Jun;81(6):3775-3786. doi: 10.1002/mrm.27652. Epub 2019 Jan 22. PMID: 30671998.  https://onlinelibrary.wiley.com/doi/abs/10.1002/mrm.27652
Cytoarchitecture of the mouse brain by high resolution diffusion magnetic resonance imaging
Wang, Nian, Leonard E. White, Yi Qi, Gary Cofer, G. Allan Johnson. "Cytoarchitecture of the mouse brain by high resolution diffusion magnetic resonance imaging." NeuroImage, Volume 216, 2020, 116876, ISSN 1053-8119   https://doi.org/10.1016/j.neuroimage.2020.116876.

 

Characterization complex collagen fiber architecture in knee joint using high-resolution diffusion imaging
Wang, Nian, Anthony J. Mirando, Gary Cofer, Yi Qi, Matthew J. Hilton, and G Allan Johnson. “Characterization complex collagen fiber architecture in knee joint using high-resolution diffusion imaging.” Magn Reson Med, January 21, 2020. https://doi.org/10.1002/mrm.28181.

 

 

 

Probing demyelination and remyelination of the cuprizone mouse model using multimodality MRI

Wang, Nian, Jie Zhuang, Hongjiang Wei, Russell Dibb, Yi Qi, and Chunlei Liu. “Probing demyelination and remyelination of the cuprizone mouse model using multimodality MRI.” J Magn Reson Imaging 50, no. 6 (December 2019): 1852–65. https://doi.org/10.1002/jmri.26758

Whole mouse brain connectomics

Allan Johnson, G., Nian Wang, Robert J. Anderson, Min Chen, Gary P. Cofer, James C. Gee, Forrest Pratson, Nicholas Tustison, and Leonard E. White. “Whole mouse brain connectomics.” J Comp Neurol 527, no. 13 (September 1, 2019): 2146–57. https://doi.org/10.1002/cne.24560

Small Animal Multivariate Brain Analysis (SAMBA) - a High Throughput Pipeline with a Validation Framework

Anderson, R. J., Cook, J. J., Delpratt, N., Nouls, J. C., Gu, B., McNamara, J. O., Avants, B. Johnson, G. A., Badea, A. (2019). Small Animal Multivariate Brain Analysis (SAMBA) - a High Throughput Pipeline with a Validation Framework. Neuroinformatics, 17(3), 451–472. https://doi.org/10.1007/s12021-018-9410-0

Experimental influences in the accurate measurement of cartilage thickness in MRI

Wang, Nian, Farid Badar, and Yang Xia. “Experimental influences in the accurate measurement of cartilage thickness in MRI.” Cartilage 10, no. 3 (July 2019): 278–87. https://doi.org/10.1177/1947603517749917.

Neurite orientation dispersion and density imaging of mouse brain microstructure

Wang, Nian, Jieying Zhang, Gary Cofer, Yi Qi, Robert J. Anderson, Leonard E. White, and G. Allan Johnson. “Neurite orientation dispersion and density imaging of mouse brain microstructure.” Brain Struct Funct 224, no. 5 (June 2019): 1797–1813. https://doi.org/10.1007/s00429-019-01877-x

Quantitative susceptibility mapping as a biomarker for evaluating white matter alterations in Parkinson's disease

Guan, Xiaojun, Peiyu Huang, Qiaoling Zeng, Chunlei Liu, Hongjiang Wei, Min Xuan, Quanquan Gu, et al. “Quantitative susceptibility mapping as a biomarker for evaluating white matter alterations in Parkinson's disease.” Brain Imaging Behav 13, no. 1 (February 2019): 220–31. https://doi.org/10.1007/s11682-018-9842-z

Dynamic contrast-enhanced MRI promotes early detection of toxin-induced acute kidney injury

Privratsky, J. R., Wang, N., Qi, Y., Ren, J., Morris, B. T., Hunting, J. C., Johnson, G. A., Crowley, S. D. (2019). Dynamic contrast-enhanced MRI promotes early detection of toxin-induced acute kidney injury. Am J Physiol Renal Physiol, 316(2), F351–F359. https://doi.org/10.1152/ajprenal.00416.2018

Diffusion tractography of the rat knee at microscopic resolution
Wang, N., Mirando, A. J., Cofer, G., Qi, Y., Hilton, M. J., & Johnson, G. A. (2019). Diffusion tractography of the rat knee at microscopic resolution. Magn Reson Med, 81(6), 3775–3786. https://doi.org/10.1002/mrm.27652
Accelerating quantitative susceptibility imaging acquisition using compressed sensing

Wang, N., Cofer, G., Anderson, R. J., Qi, Y., Liu, C., & Johnson, G. A. (2018). Accelerating quantitative susceptibility imaging acquisition using compressed sensing. Phys Med Biol, 63(24), 245002. https://doi.org/10.1088/1361-6560/aaf15d

Whole mouse brain structural connectomics using magnetic resonance histology

Wang, N., Anderson, R. J., Badea, A., Cofer, G., Dibb, R., Qi, Y., & Johnson, G. A. (2018). Whole mouse brain structural connectomics using magnetic resonance histology. Brain Struct Funct, 223(9), 4323–4335. https://doi.org/10.1007/s00429-018-1750-x

Imaging of Nanoparticle Distribution to Assess Treatments That Alter Delivery

Blocker SJ, Shields AF. Imaging of Nanoparticle Distribution to Assess Treatments That Alter Delivery. Mol Imaging Biol. 2018 Jun;20(3):340-351. doi: 10.1007/s11307-017-1142-2. Review. PubMed PMID: 29188418; PubMed Central PMCID: PMC6836466. https://link.springer.com/article/10.1007/s11307-017-1142-2

Compressed sensing in quantitative determination of GAG concentration in cartilage by microscopic MRI

Wang, Nian, Farid Badar, and Yang Xia. “Compressed sensing in quantitative determination of GAG concentration in cartilage by microscopic MRI.” Magn Reson Med 79, no. 6 (June 2018): 3163–71. https://doi.org/10.1002/mrm.26973

Diffusion tensor imaging using multiple coils for mouse brain connectomics

Nouls, J. C., Badea, A., Anderson, R. B. J., Cofer, G. P., & Allan Johnson, G. (2018). Diffusion tensor imaging using multiple coils for mouse brain connectomics. Nmr Biomed, 31(6), e3921. https://doi.org/10.1002/nbm.3921

Postmortem diffusion MRI of the entire human spinal cord at microscopic resolution

Calabrese, E., Adil, S. M., Cofer, G., Perone, C. S., Cohen-Adad, J., Lad, S. P., & Johnson, G. A. (2018). Postmortem diffusion MRI of the entire human spinal cord at microscopic resolution. Neuroimage Clin, 18, 963–971. https://doi.org/10.1016/j.nicl.2018.03.029

Susceptibility tensor imaging and tractography of collagen fibrils in the articular cartilage

Wei, Hongjiang, Eric Gibbs, Peida Zhao, Nian Wang, Gary P. Cofer, Yuyao Zhang, G Allan Johnson, and Chunlei Liu. “Susceptibility tensor imaging and tractography of collagen fibrils in the articular cartilage.” Magn Reson Med 78, no. 5 (November 2017): 1683–90. https://doi.org/10.1002/mrm.26882

Investigating magnetic susceptibility of human knee joint at 7 Tesla

Wei, Hongjiang, Russell Dibb, Kyle Decker, Nian Wang, Yuyao Zhang, Xiaopeng Zong, Weili Lin, Daniel B. Nissman, and Chunlei Liu. “Investigating magnetic susceptibility of human knee joint at 7 Tesla.” Magn Reson Med 78, no. 5 (November 2017): 1933–43. https://doi.org/10.1002/mrm.26596

Preferential adsorption of the additive is not a prerequisite for cononsolvency in water-rich mixtures

Wang, Jian, Nian Wang, Biaolan Liu, Jia Bai, Pei Gong, Geying Ru, and Jiwen Feng. “Preferential adsorption of the additive is not a prerequisite for cononsolvency in water-rich mixtures.” Physical Chemistry Chemical Physics 19, no. 44 (n.d.): 30097–106. https://doi.org/10.1039/c7cp04384h

An HPC Pipeline with Validation Framework for Small Animal Multivariate Brain Analysis (SAMBA)

Anderson, R. J., Cook, J. J., Delpratt, N. A., Nouls, J. C., Gu, B., McNamara, J. O., Avants, B. B., Johnson, G. A., Badea, A. (2017). An HPC Pipeline with Validation Framework for Small Animal Multivariate Brain Analysis (SAMBA). Corr, abs/1709.10483

Liposomal (64)Cu-PET Imaging of Anti-VEGF Drug Effects on Liposomal Delivery to Colon Cancer Xenografts

Blocker SJ, Douglas KA, Polin LA, Lee H, Hendriks BS, Lalo E, Chen W, Shields AF. Liposomal (64)Cu-PET Imaging of Anti-VEGF Drug Effects on Liposomal Delivery to Colon Cancer Xenografts. Theranostics. 2017 Sep 26;7(17):4229-4239. doi: 10.7150/thno.21688. eCollection 2017. PubMed PMID: 29158822; PubMed Central PMCID: PMC5695009. https://www.thno.org/v07p4229.htm

Influence of regional iron on the motor impairments of Parkinson's disease: A quantitative susceptibility mapping study

Guan, Xiaojun, Min Xuan, Quanquan Gu, Xiaojun Xu, Peiyu Huang, Nian Wang, Zhujing Shen, Jingjing Xu, Wei Luo, and Minming Zhang. “Influence of regional iron on the motor impairments of Parkinson's disease: A quantitative susceptibility mapping study.” J Magn Reson Imaging 45, no. 5 (May 2017): 1335–42. https://doi.org/10.1002/jmri.25434

Adult rat cortical thickness changes across age and following adolescent intermittent ethanol treatment

Vetreno, R. P., Yaxley, R., Paniagua, B., Johnson, G. A., & Crews, F. T. (2017). Adult rat cortical thickness changes across age and following adolescent intermittent ethanol treatment. Addict Biol, 22(3), 712–723. https://doi.org/10.1111/adb.12364

Exploring the origins of echo-time-dependent quantitative susceptibility mapping (QSM) measurements in healthy tissue and cerebral microbleeds

Cronin, Matthew J., Nian Wang, Kyle S. Decker, Hongjiang Wei, Wen-Zhen Zhu, and Chunlei Liu. “Exploring the origins of echo-time-dependent quantitative susceptibility mapping (QSM) measurements in healthy tissue and cerebral microbleeds.” Neuroimage 149 (April 1, 2017): 98–113. https://doi.org/10.1016/j.neuroimage.2017.01.053

Regionally progressive accumulation of iron in Parkinson's disease as measured by quantitative susceptibility mapping

Guan, Xiaojun, Min Xuan, Quanquan Gu, Peiyu Huang, Chunlei Liu, Nian Wang, Xiaojun Xu, Wei Luo, and Minming Zhang. “Regionally progressive accumulation of iron in Parkinson's disease as measured by quantitative susceptibility mapping.” Nmr Biomed 30, no. 4 (April 2017). https://doi.org/10.1002/nbm.3489

Magnetic susceptibility anisotropy outside the central nervous system

R Dibb, L Xie, H Wei, C Liu, Magnetic susceptibility anisotropy outside the central nervous system, NMR Biomed. 2017 Apr;30(4). PMCID: PMC5112155. https://onlinelibrary.wiley.com/doi/full/10.1002/nbm.3544

Joint 2D and 3D phase processing for quantitative susceptibility mapping: application to 2D echo-planar imaging

Wei, Hongjiang, Yuyao Zhang, Eric Gibbs, Nan-Kuei Chen, Nian Wang, and Chunlei Liu. “Joint 2D and 3D phase processing for quantitative susceptibility mapping: application to 2D echo-planar imaging.” Nmr Biomed 30, no. 4 (April 2017). https://doi.org/10.1002/nbm.3501

(64)Cu-MM-302 Positron Emission Tomography Quantifies Variability of Enhanced Permeability and Retention of Nanoparticles in Relation to Treatment Response in Patients with Metastatic Breast Cancer

Lee H, Shields AF, Siegel BA, Miller KD, Krop I, Ma CX, LoRusso PM, Munster PN, Campbell K, Gaddy DF, Leonard SC, Geretti E, Blocker SJ, Kirpotin DB, Moyo V, Wickham TJ, Hendriks BS. (64)Cu-MM-302 Positron Emission Tomography Quantifies Variability of Enhanced Permeability and Retention of Nanoparticles in Relation to Treatment Response in Patients with Metastatic Breast Cancer. Clin Cancer Res. 2017 Aug 1;23(15):4190-4202. doi: 10.1158/1078-0432.CCR-16-3193. Epub 2017 Mar 15. PubMed PMID: 28298546; PubMed Central PMCID: PMC6790129. https://clincancerres.aacrjournals.org/content/23/15/4190

MRI tools for assessment of microstructure and nephron function of the kidney

Xie, L., Bennett, K. M., Liu, C., Johnson, G. A., Zhang, J. L., & Lee, V. S. (2016). MRI tools for assessment of microstructure and nephron function of the kidney. Am J Physiol Renal Physiol, 311(6), F1109–F1124. https://doi.org/10.1152/ajprenal.00134.2016

Imaging whole-brain cytoarchitecture of mouse with MRI-based quantitative susceptibility mapping

Wei, H., Xie, L., Dibb, R., Li, W., Decker, K., Zhang, Y., Johnson, G.A., Liu, C. (2016). Imaging whole-brain cytoarchitecture of mouse with MRI-based quantitative susceptibility mapping. Neuroimage, 137, 107–115. https://doi.org/10.1016/j.neuroimage.2016.05.033

Dynamic contrast-enhanced quantitative susceptibility mapping with ultrashort echo time MRI for evaluating renal function

Xie, L., Layton, A. T., Wang, N., Larson, P. E. Z., Zhang, J. L., Lee, V. S., Liu, C., Johnson, G. A. (2016). Dynamic contrast-enhanced quantitative susceptibility mapping with ultrashort echo time MRI for evaluating renal function. Am J Physiol Renal Physiol, 310(2), F174–F182. https://doi.org/10.1152/ajprenal.00351.2015

Tumor location, but not H3.3K27M, significantly influences the blood-brain-barrier permeability in a genetic mouse model of pediatric high-grade glioma

Subashi, E., Cordero, F. J., Halvorson, K. G., Qi, Y., Nouls, J. C., Becher, O. J., & Johnson, G. A. (2016). Tumor location, but not H3.3K27M, significantly influences the blood-brain-barrier permeability in a genetic mouse model of pediatric high-grade glioma. J Neurooncol, 126(2), 243–251. https://doi.org/10.1007/s11060-015-1969-9

MRI properties of a unique hypo-intense layer in degraded articular cartilage

Wang, Nian, Farid Badar, and Yang Xia. “MRI properties of a unique hypo-intense layer in degraded articular cartilage.” Phys Med Biol 60, no. 22 (November 21, 2015): 8709–21. https://doi.org/10.1088/0031-9155/60/22/8709

Streaking artifact reduction for quantitative susceptibility mapping of sources with large dynamic range

Wei, Hongjiang, Russell Dibb, Yan Zhou, Yawen Sun, Jianrong Xu, Nian Wang, and Chunlei Liu. “Streaking artifact reduction for quantitative susceptibility mapping of sources with large dynamic range.” Nmr Biomed 28, no. 10 (October 2015): 1294–1303. https://doi.org/10.1002/nbm.3383

An MRI/DTI Atlas of the Rat Brain

Paxinos, G., Watson, C., Calabrese, E., Badea, A., & Johnson, G. (2015). An MRI/DTI Atlas of the Rat Brain. Elsevier, Academic Press. https://www.elsevier.com/books/mri-dti-atlas-of-the-rat-brain/paxinos/978-0-12-417313-2

Postmortem diffusion MRI of the human brainstem and thalamus for deep brain stimulator electrode localization

Calabrese, E., Hickey, P., Hulette, C., Zhang, J., Parente, B., Lad, S. P., & Johnson, G. A. (2015). Postmortem diffusion MRI of the human brainstem and thalamus for deep brain stimulator electrode localization. Hum Brain Mapp, 36(8), 3167–3178. https://doi.org/10.1002/hbm.22836

Magnetic resonance histology

Johnson, G. A. (2015). Magnetic resonance histology. J Magn Reson Imaging, 42(1), 1–2. https://doi.org/10.1002/jmri.24774

Localization of Metal Electrodes in the Intact Rat Brain Using Registration of 3D Microcomputed Tomography Images to a Magnetic Resonance Histology Atlas

Borg, J. S., Vu, M.-A., Badea, C., Badea, A., Johnson, G. A., & Dzirasa, K. (2015). Localization of Metal Electrodes in the Intact Rat Brain Using Registration of 3D Microcomputed Tomography Images to a Magnetic Resonance Histology Atlas. Eneuro, 2(4). https://doi.org/10.1523/ENEURO.0017-15.2015

A Diffusion MRI Tractography Connectome of the Mouse Brain and Comparison with Neuronal Tracer Data

Calabrese, E., Badea, A., Cofer, G., Qi, Y., & Johnson, G. A. (2015). A Diffusion MRI Tractography Connectome of the Mouse Brain and Comparison with Neuronal Tracer Data. Cereb Cortex, 25(11), 4628–4637. https://doi.org/10.1093/cercor/bhv