Publications Archive

Optimization of eight-element multi-detector row helical CT technology for evaluation of the abdomen

Gupta, A. K., Nelson, R. C., Johnson, G. A., Paulson, E. K., Delong, D. M., & Yoshizumi, T. T. (2003). Optimization of eight-element multi-detector row helical CT technology for evaluation of the abdomen. Radiology, 227(3), 739–745. https://doi.org/10.1148/radiol.2273020591

Optimization of eight-element multi-detector helical CT for imaging the abdomen

Gupta, A. K., Johnson, G. A., & Nelson, R. C. (2002). Optimization of eight-element multi-detector helical CT for imaging the abdomen. Radiology, 222(2), 589–589. https://pubs.rsna.org/doi/10.1148/radiol.2273020591

Improved preparation of chick embryonic samples for magnetic resonance microscopy

Zhang, X., Yelbuz, T. M., Cofer, G. P., Choma, M. A., Kirby, M. L., & Johnson, G. A. (2003). Improved preparation of chick embryonic samples for magnetic resonance microscopy. Magn Reson Med, 49(6), 1192–1195. https://doi.org/10.1002/mrm.10460

Measurement of regional lung function in rats using hyperpolarized 3helium dynamic MRI

Chen, B. T., Brau, A. C. S., & Johnson, G. A. (2003). Measurement of regional lung function in rats using hyperpolarized 3helium dynamic MRI. Magn Reson Med, 49(1), 78–88. https://doi.org/10.1002/mrm.10336

Magnetic resonance histology for morphologic phenotyping

Johnson, G. A., Cofer, G. P., Fubara, B., Gewalt, S. L., Hedlund, L. W., & Maronpot, R. R. (2002). Magnetic resonance histology for morphologic phenotyping. J Magn Reson Imaging, 16(4), 423–429. https://doi.org/10.1002/jmri.10175

Mechanical ventilation for imaging the small animal lung

Hedlund, L. W., & Johnson, G. A. (2002). Mechanical ventilation for imaging the small animal lung. Ilar J, 43(3), 159–174. https://doi.org/10.1093/ilar.43.3.159

Imaging inflammation: direct visualization of perivascular cuffing in EAE by magnetic resonance microscopy

Gareau, P. J., Wymore, A. C., Cofer, G. P., & Johnson, G. A. (2002). Imaging inflammation: direct visualization of perivascular cuffing in EAE by magnetic resonance microscopy. J Magn Reson Imaging, 16(1), 28–36. https://doi.org/10.1002/jmri.10136

MRI of the lungs using hyperpolarized noble gases

Möller, H. E., Chen, X. J., Saam, B., Hagspiel, K. D., Johnson, G. A., Altes, T. A., Altes, T. A., de Lange, E. E., Kauczor, H.-U. (2002). MRI of the lungs using hyperpolarized noble gases. Magn Reson Med, 47(6), 1029–1051. https://doi.org/10.1002/mrm.10173

Application of magnetic resonance microscopy to tissue engineering: a polylactide model

Burg, K. J. L., Delnomdedieu, M., Beiler, R. J., Culberson, C. R., Greene, K. G., Halberstadt, C. R., Holder Jr., W. D., Loebsack, A. B., Roland, W. D., Johnson, G. A. (2002). Application of magnetic resonance microscopy to tissue engineering: a polylactide model. J Biomed Mater Res, 61(3), 380–390. https://doi.org/10.1002/jbm.10146

Image based phenotyping: The visible mouse

Johnson, G. A., & Hedlund, L. W. (2002). Image based phenotyping: The visible mouse. Faseb Journal, 16(5), A1091–A1091. https://scholars.duke.edu/display/pub655235

Morphologic phenotyping with MR microscopy: the visible mouse

Johnson, G. A., Cofer, G. P., Gewalt, S. L., & Hedlund, L. W. (2002). Morphologic phenotyping with MR microscopy: the visible mouse. Radiology, 222(3), 789–793. https://doi.org/10.1148/radiol.2223010531

Fiber-optic stethoscope: a cardiac monitoring and gating system for magnetic resonance microscopy

Brau, A. C. S., Wheeler, C. T., Hedlund, L. W., & Johnson, G. A. (2002). Fiber-optic stethoscope: a cardiac monitoring and gating system for magnetic resonance microscopy. Magn Reson Med, 47(2), 314–321. https://doi.org/10.1002/mrm.10049

Liver: single breath-hold dynamic subtraction CT with multi-detector row helical technology feasibility study

Spielmann, A. L., Nelson, R. C., Lowry, C. R., Johnson, G. A., Sundaramoothy, G., Sheafor, D. H., & Paulson, E. K. (2002). Liver: single breath-hold dynamic subtraction CT with multi-detector row helical technology feasibility study. Radiology, 222(1), 278–283. https://doi.org/10.1148/radiol.2221010190

Single breath-hold dynamic subtraction CT with multidetector helical technology

Nelson, R. C., Johnson, G. A., Spielman, A. L., Lowry, C. R., Sundaramoorthy, G., & Sheafor, D. H. (2002). Single breath-hold dynamic subtraction CT of the liver using-multidetector helical technology. Radiology, 213P, 125–125. https://pubs.rsna.org/doi/10.1148/radiol.2221010190

Multi-detector vs single-detector CT: The organ doses are higher than you think

Paulson, E. K., Yoshizumi, T. T., Frush, D. P., & Johnson, G. A. (2001). Multi-detector vs single-detector CT: The organ doses are higher than you think. Radiology, 221, 403–403. https://phy.duke.edu/multi-detector-vs-single-detector-ct-organ-doses-are-higher-you-think

Radiation dose from helical CT in children: Comparison of multi-slice and single-slice protocols

Frush, D. P., Yoshizumi, T. T., Paulson, E. K., & Johnson, G. A. (2001). Radiation dose from helical CT in children: Comparison of multi-slice and single-slice protocols. Radiology, 221, 246–246. https://scholars.duke.edu/display/pub655008

Using technology to develop a hepatic lipidosis blomarker in the rat

Tengowski, M. W., Suddarth, S. A., Cofer, G. P., Wheeler, C. T., Botts, S., Fasulo, L. M., Jeffries-Griffor, J. L., Amacher, D. E., Lawton, M. P., Hedlund, L. W., Zhang, X. W., Burkhardt, J..E., Johnson, G. A. (2001). Using technology to develop a hepatic lipidosis blomarker in the rat. Molecular Biology of the Cell, 12, 261A-261A. https://phy.duke.edu/using-technology-develop-hepatic-lipidosis-blomarker-rat

Diabetes insipidus in uricase-deficient mice: a model for evaluating therapy with poly(ethylene glycol)-modified uricase

Kelly, S. J., Delnomdedieu, M., Oliverio, M. I., Williams, L. D., Saifer, M. G., Sherman, M. R., Coffman, T. M., Johnson, G. A., Hershfield, M. S. (2001). Diabetes insipidus in uricase-deficient mice: a model for evaluating therapy with poly(ethylene glycol)-modified uricase. J Am Soc Nephrol, 12(5), 1001–1009. https://www.ncbi.nlm.nih.gov/pubmed/11316859

Measurements of hyperpolarized gas properties in the lung. Part III: (3)He T(1)

Möller, H. E., Hedlund, L. W., Chen, X. J., Carey, M. R., Chawla, M. S., Wheeler, C. T., & Johnson, G. A. (2001). Measurements of hyperpolarized gas properties in the lung. Part III: (3)He T(1). Magn Reson Med, 45(3), 421–430. https://doi.org/10.1002/1522-2594(200103)45:3<421::aid-mrm1055>3.0.co;2-k

Registered (1)H and (3)He magnetic resonance microscopy of the lung

Johnson, G. A., Cofer, G. P., Hedlund, L. W., Maronpot, R. R., & Suddarth, S. A. (2001). Registered (1)H and (3)He magnetic resonance microscopy of the lung. Magn Reson Med, 45(3), 365–370. https://doi.org/10.1002/1522-2594(200103)45:3<365::aid-mrm1047>3.0.co;2-0

Magnetic resonance microscopy predicts findings in a theophylline-induced rat model of reproductive toxicity

Tengowski, M. W., Hedlund, L. W., Guyot, D. J., Burkhardt, J. E., & Johnson, G. A. (2000). Magnetic resonance microscopy predicts findings in a theophylline-induced rat model of reproductive toxicity. Molecular Biology of the Cell, 11, 125A-125A. https://scholars.duke.edu/display/pub655172

Detection of emphysema in rat lungs by using magnetic resonance measurements of 3He diffusion

Chen, X. J., Hedlund, L. W., Möller, H. E., Chawla, M. S., Maronpot, R. R., & Johnson, G. A. (2000). Detection of emphysema in rat lungs by using magnetic resonance measurements of 3He diffusion. Proc Natl Acad Sci U S A, 97(21), 11478–11481. https://doi.org/10.1073/pnas.97.21.11478

MR-compatible ventilator for small animals: computer-controlled ventilation for proton and noble gas imaging

Hedlund, L. W., Cofer, G. P., Owen, S. J., & Allan Johnson, G. (2000). MR-compatible ventilator for small animals: computer-controlled ventilation for proton and noble gas imaging. Magn Reson Imaging, 18(6), 753–759. https://doi.org/10.1016/s0730-725x(00)00154-5

Mixing oxygen with hyperpolarized (3)He for small-animal lung studies

Hedlund, L. W., Möller, H. E., Chen, X. J., Chawla, M. S., Cofer, G. P., & Johnson, G. A. (2000). Mixing oxygen with hyperpolarized (3)He for small-animal lung studies. Nmr Biomed, 13(4), 202–206. https://doi.org/10.1002/1099-1492(200006)13:4<202::aid-nbm645>3.0.co;2-j

Magnetic resonance microscopy of the C57BL mouse brain

Benveniste, H., Kim, K., Zhang, L., & Johnson, G. A. (2000). Magnetic resonance microscopy of the C57BL mouse brain. Neuroimage, 11(6 Pt 1), 601–611. https://doi.org/10.1006/nimg.2000.0567

Hyperpolarized 3He microspheres as a novel vascular signal source for MRI

Chawla, M. S., Chen, X. J., Cofer, G. P., Hedlund, L. W., Kerby, M. B., Ottoboni, T. B., & Johnson, G. A. (2000). Hyperpolarized 3He microspheres as a novel vascular signal source for MRI. Magn Reson Med, 43(3), 440–445. https://doi.org/10.1002/(sici)1522-2594(200003)43:3<440::aid-mrm16>3.0.co;2-m

T1rho imaging using magnetization-prepared projection encoding (MaPPE)

Nugent, A. C., & Johnson, G. A. (2000). T1rho imaging using magnetization-prepared projection encoding (MaPPE). Magn Reson Med, 43(3), 421–428. https://doi.org/10.1002/(sici)1522-2594(200003)43:3<421::aid-mrm14>3.0.co;2-x

Abnormal water metabolism in mice lacking the type 1A receptor for ANG II

Oliverio, M. I., Delnomdedieu, M., Best, C. F., Li, P., Morris, M., Callahan, M. F., Johnson, G. A, Smithies, O., Coffman, T. M. (2000). Abnormal water metabolism in mice lacking the type 1A receptor for ANG II. Am J Physiol Renal Physiol, 278(1), F75–F82. https://doi.org/10.1152/ajprenal.2000.278.1.F75

Virtual neuropathology: three-dimensional visualization of lesions due to toxic insult

Lester, D. S., Pine, P. S., Delnomdedieu, M., Johannessen, J. N., & Johnson, G. A. (2000). Virtual neuropathology: three-dimensional visualization of lesions due to toxic insult. Toxicol Pathol, 28(1), 100–104. https://doi.org/10.1177/019262330002800112

Virtual neuropathology: A new approach to preclinical pathology using magnetic resonance imaging microscopy

Lester, D. S., Johannessen, J. N., Pine, P. S., McGregor, G. N., & Johnson, G. A. (1999). Virtual neuropathology: A new approach to preclinical pathology using magnetic resonance imaging microscopy. Spectroscopy (Santa Monica), 14(7), 17–22. https://scholars.duke.edu/display/pub655312