4D MRI of renal function in the developing mouse

Luke Xie1,2, Ergys Subashi1,3, Yi Qi1, Mark A. Knepper4, G. Allan Johnson1,2

1Center for In Vivo Microscopy, Duke University Medical Center
2Biomedical Engineering, Duke University
3Medical Physics, Duke University Medical Center
4Epithelial Systems Biology Laboratory, NIH/NHLBI

NMR in Biomedicine, 27(9): 1094-1102, September 2014. PMCID: PMC4134394

The major roles of filtration, metabolism, and high blood flow make the kidney highly vulnerable to drug-induced toxicity and other renal injuries. A method to follow kidney function is essential for early screening of toxicity and malformations. In this study, we acquired high spatiotemporal resolution (4D) datasets of normal mice to follow changes in kidney structure and function during development. The data were acquired with dynamic contrast-enhanced MRI (via keyhole imaging) and a cryogenic surface coil, allowing us to obtain a full 3D image (125-micron isotropic resolution) every 7.7 seconds over a 50-minute scan. This time course permitted demonstration of both contrast enhancement and clearance. Functional changes were measured over a 17-week course (at 3, 5, 7, 9, 13, and 17 weeks). The 4th dimension (time) was processed to produce unique image contrasts for segmenting the 4 regions of the kidney: cortex (CO), outer stripe (OS) of the outer medulla (OM), inner stripe (IS) of the OM, and inner medulla (IM). Local volumes, time-to-peak (TTP) values, and decay constants (DC) were measured in each renal region. These metrics increased significantly with age, with the exception of DC values in the IS and OS. These data will serve as a foundation for studies of normal renal physiology and future studies of renal diseases that require early detection and intervention.

Supplementary Data:

CIVM makes many types of data acquired for published and yet unpublished studies available through our CIVM VoxPort application. Use of VoxPort is free. Registration is required. Register for VoxPort access now. A new browser window or tab will open.

We ask that you provide contact information, and agree to give credit to the Duke Center for In Vivo Microscopy for any written or oral presentation using data from this site. Please use the following acknowledgement: Imaging data provided by the Duke Center for In Vivo Microscopy NIH/NIBIB (P41 EB015897).

Instructions: Click on a link below. A new browser window or tab will open where you will be prompted to login to CIVMVoxPort. If you do not have login credentials, follow the instructions to register for access. After you login, come back to this page and re-click on a link below to go directly to the desired page.

View Supplementary Materials in CIVMVoxPort


The authors wish to thank the members of the Duke Center for In Vivo Microscopy.